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Abstract
We have investigated Turing pattern formation through linear stability analysis
and numerical simulations in a two-species reaction–diffusion system in which
a fractional order temporal derivative operates on both species, and on both
the diffusion term and the reaction term. The order of the fractional derivative
affects the time onset of patterning in this model system but it does not affect
critical parameters for the onset of Turing instabilities and it does not affect
the final spatial pattern. These results contrast with earlier studies of Turing
pattern formation in fractional reaction–diffusion systems with a fractional
order temporal derivative on the diffusion term but not the reaction term.

In addition to elucidating differences between these two model systems,
our studies provide further evidence that Turing linear instability analysis is an
excellent predictor of both the onset of and the nature of pattern formation in
fractional nonlinear reaction–diffusion equations.

1. Introduction

In recent years, there has been a rapid proliferation in experimental findings of anomalous
sub-diffusion reported in materials physics [1, 2], biophysics [3, 4] and econophysics [5].
Anomalous sub-diffusion is characterized by sublinear power law scaling of mean square
displacements and heavy tailed probability density functions. The formalism of continuous
time random walks (CTRWs) [6, 7], i.e., random walks in which the waiting time between
successive steps and the length of the steps are both random variables, has proven a useful
starting point for developing theoretical models of systems with anomalous diffusion. One
of the most successful paradigms to emerge from this research has been fractional calculus
models for anomalous diffusion [8–10]. In the CTRW model, anomalous sub-diffusion arises
when the asymptotic long time limit of the waiting time probability density function is heavy
tailed, i.e., ψ(t) ∼ t−α−1 with 0 < α < 1. The evolution equation for the concentration of
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non-reacting species undergoing sub-diffusion can then be modelled using a time-fractional
diffusion equation which differs from the conventional diffusion equation in that it has a
fractional order temporal derivative operating on the spatial Laplacian [8].

A natural generalization is to consider fractional reaction diffusion models for the
concentration of species undergoing sub-diffusion and reactions. In the case of standard
diffusion with reactions the two effects can be combined additively in a mean field model
with the term for reactions represented by a functional form derived from the law of mass
action [11, 12]. Standard reaction–diffusion equations have proven useful in many fields
including nerve cell signalling [13], animal coat patterns [14], population dispersal [15],
and chemistry [16]. One possible generalization of the fractional sub-diffusion equation,
to incorporate reactions, is to add a reaction term to the fractional diffusion term [17–29].
This generalization can be derived from a mesoscopic description based on CTRWs where
the reaction term models walkers that are added or removed instantaneously from the
system [17, 26]. The mesoscopic description can be motivated by a coarse grained
representation of space with diffusion (jumps) between cells and reactions within cells. It
is assumed that the waiting time density of jumps is independent of the reaction terms in this
description. The characteristic length scale �D and timescale τD in the mesoscopic description
are related to physical length scales and physical timescales as follows [30]: (i) δ�R � �D � L
and (ii) δτD � δτR � τD � T where δ�R is the characteristic size of a reaction zone, δτD

is the characteristic microscopic diffusion time for encounters between reactants, δτR is the
characteristic microscopic reaction time, L is the size of the domain and T is the timescale of
the experiment.

A major difficulty with mesoscopic models for sub-diffusion with reactions, leading to
fractional reaction–diffusion equations, is the identification of the particular functional form
that should be adopted for particular reaction kinetics. This is especially problematic in
the case of nonlinear reaction kinetics. However, in the case of linear reaction kinetics the
following results have been obtained: if a constant proportion of walkers is added or removed
instantaneously at the start of each step in the CTRW then the reaction term in the corresponding
fractional reaction diffusion equation is a linear functional operated on by the same fractional
order temporal operator as the diffusion term [30]. If walkers are added or removed at a constant
per capita rate over the waiting times between steps then the description as a fractional order
reaction–diffusion equation cannot be written simply as a reaction term functional added to
the fractional sub-diffusion term [31, 30]. Despite the problems in relating particular reaction
kinetics to particular functional forms in nonlinear fractional reaction–diffusion equations, it
is interesting to investigate such systems as models for pattern formation [18, 32, 28, 29], or
front propagation [20, 25], in species undergoing sub-diffusion with nonlinear source and sink
terms. Similarly, nonlinear fractional reaction–diffusion equations with fractional order spatial
derivatives operating on the diffusion term and with additive reaction terms have been studied
as models for pattern formation [33], and front propagation [34], in species undergoing super-
diffusion with nonlinear source and sink terms.

One of the best understood models for pattern formation in standard reaction–diffusion
systems is Turing instability induced pattern formation [14]. In this model patterning can
occur if the homogeneous steady state is linearly stable in the absence of spatial diffusion but
linearly unstable in the presence of diffusion. The spatial pattern that results is dominated by
the wavelength of the most unstable mode in the linear analysis. In recent work we investigated
Turing instability induced pattern formation in a two-species fractional reaction–diffusion
system with standard nonlinear activator–inhibitor reaction terms and fractional order temporal
derivatives operating on the standard diffusion term [28]. Our theoretical and numerical
investigations provided a clear demonstration that the Turing mechanism could account for
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patterning in this model system. Furthermore it was shown, by lowering the order of the
fractional temporal derivative to be the same on both the activator and inhibitor diffusion terms
or by having fractional diffusion for the activator but standard diffusion for the inhibitor, that
the onset of patterning could occur for lower values of the diffusivity ratios. The dominant
wavelength of the spatial patterns that result was also reduced by lowering the order of the
fractional temporal derivative.

In this paper we describe our studies of Turing instability induced pattern formation in
a two-species fractional reaction–diffusion system with fractional order temporal derivatives
operating on both the nonlinear activator and inhibitor reaction terms as well as the diffusion
terms. Fractional reaction–diffusion systems with the same fractional order temporal derivative
operating on the diffusion terms and the reaction terms have been proposed as models for sub-
diffusion with traps [22, 23, 25] and recent numerical studies of pattern formation in systems
with fractional order temporal derivatives on diffusion terms and reaction terms were reported
in [29]. In the studies reported here we find that the Turing linear instability analysis is again
an excellent predictor of both the onset of and the nature of pattern formation. However, while
the order of the fractional derivative affects the time at which patterns emerge it does not affect
the critical diffusivity ratios for the onset of Turing instabilities, nor does it affect the dominant
wavelength in the resulting spatial pattern.

The clear difference between the patterning in these different fractional reaction–sub-
diffusion equations provides a way of distinguishing which, if either, model might apply in
a given experimental situation.

The remainder of this paper is organized as follows. In section 2 we summarize the
mesoscopic CTRW formalism that leads to a fractional order temporal derivative operating on
a standard Laplacian, combined with an additive reaction term, which may or may not involve
fractional temporal derivatives. In section 3 we carry out Turing linear stability analysis in
the fractional reaction–diffusion model for the special case in which the same temporal order
fractional derivative operates on both the diffusion terms and the reaction terms, and in section 4
we carry out numerical studies of Turing pattern formation in this special case. We discuss our
findings further in section 5.

2. Continuous time random walks with sources and sinks

The continuous time random walk (CTRW) was introduced by Montroll and Weiss [6], and
Scher and Lax [7], as a generalization of the standard random walk introduced by Pearson in
1905 [35]. In the CTRW the waiting times between successive steps and the length of the steps
are both random variables with the associated probability density �(x, t) for the particle to
step a distance x after waiting a time t . If the walk is considered to take place on a discrete
lattice then the conditional probability density qn(x, t|x0, 0) that a walker starting at x0 at time
zero arrives at position x at time t after n steps satisfies the recursion equation [7]

qn+1(x, t|x0, 0) =
∑

x′

∫ t

0
�(x − x ′, t − t ′)qn(x

′, t ′|x0, 0) dt ′ (1)

where �(x − x ′, t − t ′) is the probability density that a random walker jumps a distance x − x ′,
after waiting a time t − t ′, in a single step. The initial condition that the walker is at x0 at time
zero,

q0(x, t|x0, 0) = δx,x0δ(t), (2)

satisfies the normalization
∑

x′

∫ ∞

0
q0(x

′, t ′|x0, 0) dt ′ = 1. (3)
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If walkers are added and/or removed instantaneously at the start of each step according to
a source/sink term sn(x, t) and if it is assumed that the waiting time distribution of jumps is
independent of this addition or removal then the conditional density for walkers to arrive after
n + 1 steps can be written as

qn+1(x, t) =
∫ t

0

∑

x′

(
qn(x

′, t ′)+ sn(x
′, t ′)

)
ψ(t − t ′)λ(x − x ′) dt ′. (4)

The conditional density for walkers to arrive at position x at time t after any number of steps is
given by

q(x, t|x0, 0) =
∞∑

n=0

qn(x, t|x0, 0). (5)

It is convenient to define the net contribution from the source/sink term in a similar manner, as

s(x, t) =
∞∑

n=0

sn(x, t). (6)

Following [7, 36], we write
∞∑

n=0

qn(x, t|x0, 0) = q0(x, t|x0, 0)+
∞∑

n=0

qn+1(x, t|x0, 0),

and then after performing a summation over n the recursion relation (4) can be written as

q(x, t) =
∑

x′

∫ t

0
ψ(t − t ′)λ(x − x ′)

(
q(x ′, t ′)+ s(x ′, t ′)

)
dt ′ + δ(t)δx,x0 . (7)

In the remainder it is supposed that the probability density�(x, t) decouples in space and time,
i.e.,

�(x, t) = ψ(t)λ(x) (8)

where ψ(t) is the waiting time probability density given by

ψ(t) =
∑

x′
�(x ′, t) (9)

and λ(x) is the step length probability density given by

λ(x) =
∫ ∞

0
�(x, t ′) dt ′. (10)

It is also useful to define the survival probability distribution	(t) that the walker does not take
a step in time interval t

	(t) = 1 −
∫ t

0
ψ(t ′) dt ′ =

∫ ∞

t
ψ(t ′) dt ′. (11)

The conditional density p(x, t|x0, 0) for walkers to be at position x at time t is equivalent
to the density of walkers that arrived at x at earlier times t ′ and thereafter did not take a
step [6, 7, 36], combined now with the walkers introduced or removed by the source/sink term
at x at earlier times t ′ (assuming the same survival characteristics). Thus we can write

p(x, t|x0, 0) =
∫ t

0

(
q(x, t − t ′|x0, 0)+ s(x, t − t ′)

)
	(t ′) dt ′. (12)

While it is possible to choose any source term in the above equation the same is not true if
s(x, t) models a sink term. Certain choices of the sink term could result in negative densities.
This does not imply that a different model formulation is required for sink terms than for
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source terms, but, rather, judicious selection of the appropriate sink term is required to ensure
that particles are not removed from locations at a faster rate then they arrive. The simplest
valid choice for a sink term is given by s(x, t) = −rq(x, t) (with 0 < r < 1) [30]. In
our mesoscopic formulation this represents the instantaneous removal of a fraction of walkers
before they take their next step. The same model equation as (12) with s(x, t) = −kq(x, t) has
also been derived as a model for CTRWs with linear degradation [37] (see appendix A). In this
derivation the physical interpretation of the parameter k is the probability that a given particle
degrades before it takes its next step.

The results in (7) and (12) can be combined using Laplace transforms as follows. The
Laplace transform of (12) yields

p̂(x, u|x0, 0) = (
q̂(x, u|x0, 0)+ ŝ(x, u)

)
	̂(u), (13)

and the Laplace transform of (7) yields

q̂(x, u|x0, 0) =
∑

x′
�̂(x ′, u)

(
q̂(x − x ′, u|x0, 0)+ ŝ(x − x ′, u)

)+ δx,x0 . (14)

We can combine the results in (13) and (14) to obtain

p̂(x, u|x0, 0) =
∑

x′
�̂(x ′, u)	̂(u)

(
q̂(x − x ′, u|x0, 0)+ ŝ(x − x ′, u)

)

+ 	̂(u)ŝ(x, u)+ 	̂(u)δx,x0 , (15)

=
∑

x′
�̂(x ′, u) p̂(x − x ′, u|x0, 0)+ 	̂(u)ŝ(x, u)+ 	̂(u)δx,x0 . (16)

The inverse Laplace transform of (16) now yields

p(x, t|x0, 0) = 	(t)δx,x0 +
∑

x′

∫ t

0
p(x ′, t ′|x0, 0)�(x − x ′, t − t ′) dt ′

+
∫ t

0
	(t − t ′)s(x, t ′) dt ′. (17)

The above equation can be generalized to allow for walkers coming from different starting
locations, represented by an initial distribution c(x0, 0|x0, 0) in the density of walkers, as a
function of their starting positions x = x0 at time t = 0. We can write

p(x, t|x0, 0) = c(x, t|x0, 0)

c(x0, 0|x0, 0)
so that
c(x, t|x0, 0)

c(x0, 0|x0, 0)
= 	(t)δx,x0 +

∑

x′

∫ t

0

c(x ′, t ′|x0, 0)

c(x0, 0|x0, 0)
�(x − x ′, t − t ′) dt ′

+
∫ t

0
	(t − t ′)s(x, t ′) dt ′. (18)

After multiplying by the initial density we obtain

c(x, t|x0, 0) = 	(t)c(x0, 0|x0, 0)δx,x0 +
∑

x′

∫ t

0
c(x ′, t ′|x0, 0)�(x − x ′, t − t ′) dt ′

+
∫ t

0
	(t − t ′)c(x0, 0|x0, 0)s(x, t ′) dt ′. (19)

Now we sum over all possible starting points x0 and define the total density of walkers
independent of their starting locations

n(x, t) =
∑

x0

c(x, t|x0, 0) (20)
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with initial total density

n(x, 0) = c(x, 0|x, 0) (21)

and the (renormalized) net contribution from sources and sinks

g(x, t) =
∑

x0

c(x0, 0|x0, 0)s(x, t), (22)

to obtain

n(x, t) = 	(t)n(x, 0)+
∑

x′

∫ t

0
n(x ′, t ′)�(x − x ′, t − t ′) dt ′ +

∫ t

0
	(t − t ′)g(x, t ′) dt ′. (23)

The above equation can also be motivated by heuristic arguments [17, 20, 26]. The
additional source/sink term

∫ t
0 	(t − t ′)g(x, t ′) dt ′ represents the net contribution to the density

of walkers at x and t due to (i) walkers instantaneously added at x at time t ′ < t that then do
not jump from x over the time (t − t ′) and (ii) walkers instantaneously removed at x at time
t ′ < t that would not otherwise have jumped from x during the time (t − t ′). Thus walkers
with survival characteristics represented through	(t) are added or removed from the system at
a rate g(x, t). The formulation of the problem in (23) is a general model for the instantaneous
addition or removal of walkers in a mesoscopic description but there would need to be careful
consideration of the appropriate choice for g(x, t) to model a particular physical process. This
is particularly true if g(x, t) represents a sink, since some choices (including a simple linear
functional of n(x, t)) could lead to unphysical negative solutions [30].

The long time asymptotic behaviour of n(x, t) that is consistent with (23) can be described
by a fractional reaction diffusion equation [17]. The steps are as follows: carry out a spatial
Fourier transform and a temporal Laplace transform, use asymptotic expansions in small
values of the Fourier and Laplace variables, and re-formulate the inverse transforms using
the definition of the Riemann–Liouville fractional derivative. Explicitly, the Fourier–Laplace
transform of (23) with Fourier variable q and Laplace variable u yields

ˆ̂n(q, u) = 	̂(u)n̂(q, 0)+ ψ̂(u)λ̂(q) ˆ̂n(q, u)+ 	̂(u)n̂(q, 0)+ 	̂(u) ˆ̂g(q, u). (24)

The Laplace transform of the survival probability (11) can be written as

	̂(u) = 1

u
− ψ̂(u)

u
(25)

and the small q asymptotic expansion of the step length density is given by

λ̂(q) ∼ 1 − q2σ 2

2
+ O(q4) (26)

with

σ 2 =
∫

r 2λ(r) dr (27)

finite. We can thus write (24) as

u ˆ̂n(q, u) ≈
(

1 − ψ̂(u)
)

n̂(q, 0)+ uψ̂(u)

(
1 − q2σ 2

2

)
ˆ̂n(q, u)+

(
1 − ψ̂(u)

) ˆ̂g(q, u). (28)

We now consider asymptotic small u results for a heavy tailed waiting time density

ψ(t) ∼ K

τα
t−α−1 (29)
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that is characteristic of anomalous sub-diffusion (see e.g., [8]). The asymptotic Laplace
transform for this density function is obtained from a Tauberian (Abelian) theorem [38, 39]
as

ψ̂(u) ∼ 1 − K�(1 − α)τα

α
uα. (30)

Note that a similar expression for the Laplace transform of the waiting time density results
without the need for long time asymptotics in the special case where the waiting time density
is given by the derivative of a Mittag–Leffler function [40]. We now substitute the above
expansion (30) into (28) to arrive at

u ˆ̂n(q, u) ≈ K�(1 − α)τα

α
uαn̂(q, 0)+ u

(
1 − K�(1 − α)τα

α
uα
)(

1 − q2σ 2

2

)
ˆ̂n(q, u)

+ K�(1 − α)τα

α
uα ˆ̂g(q, u). (31)

If we re-arrange this equation and retain only leading order terms then

u ˆ̂n(q, u)− n̂(q, 0) ≈ − α

K�(1 − α)τα
u1−α q2σ 2

2
ˆ̂n(q, u)+ ˆ̂g(q, u). (32)

The inverse Laplace transform and inverse Fourier transform of (32) now yields the asymptotic
approximation

∂n

∂ t
= D(α)D1−α

[
∂2n

∂x2

]
+ g(x, t) (33)

where

D(α) = σ 2α

2K�(1 − α)τα
. (34)

Here we use the notation

D1−α [y(x, t)
] = ∂1−α

∂ t1−α y(x, t)+ L−1

{
∂−α

∂ t−α y(x, t)|t=0

}
, 0 < α < 1 (35)

where

∂1−α

∂ t1−α y(x, t) (36)

is the Riemann–Liouville fractional derivative defined as the ordinary derivative of the
Riemann–Liouville fractional integral

D−α [y(x, t)
] = ∂−α

∂ t−α y(x, t) = 1

�(α)

∫ t

0

y(x, t)

(t − s)1−α ds, 0 < α < 1. (37)

Note that the operator Dγ has a different definition depending on whether γ is positive (35) or
negative (37). Note too that the inverse Laplace transform of the fractional integral evaluated
at time zero, which appears in the operator D1−α in (35), will cancel in (33) if the method of
Laplace transforms is applied to find the solution.

The fractional reaction–diffusion equation (33), as written, has a fractional order temporal
derivative operating on the diffusion term but no explicit fractional order temporal derivative
operating on the the source/sink reaction term. However, the source/sink term has not been
related to any particular reaction kinetics in the derivation above and indeed this is still an
outstanding problem [30]. Two ad hoc source/sink terms that have been considered in reaction
sub-diffusion problems are [17, 18, 20, 24, 30]

g(x, t) = f (n(x, t)), (38)
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and [25, 29]

g(x, t) = ∂1−α

∂ t1−α f (n(x, t)) (39)

where f (n(x, t)) is the standard functional for reaction rate kinetics described by the law
of mass action. The utility of either of these models as an approximation of the long time
behaviour in physical processes driven by reaction with sub-diffusion is yet to be tested by
comparison with physical experiments.

In earlier work we investigated Turing instability induced pattern formation in a two-
species fractional reaction sub-diffusion equation, with reaction terms from the law of
mass action for activator–inhibitor systems, and with a fractional order temporal derivative
operating on the diffusion term, i.e. a two-species variant of (33) and (38). We now consider
Turing instability induced pattern formation in a two-species fractional reaction sub-diffusion
equation, with a fractional order temporal derivative operating on both the reaction terms from
the law of mass action for activator–inhibitor systems, and on the diffusion term. i.e., a two-
species variant of (33) and (39).

Before we leave this section it is worth noting the following: a fractional reaction sub-
diffusion equation with temporal order derivatives operating explicitly on the source/sink term
as well the diffusion term can be obtained if the survival probability for walkers added or
removed by the source/sink term is taken to be a standard Poisson distribution rather than
a heavy tailed distribution. Furthermore, if a constant proportion, r , of walkers is added
or removed instantaneously at the start of each step then the corresponding source/sink term
in (33) is given by the fractional temporal derivative of a linear functional [30]

g(x, t) = r − 1

r

α

K�(1 − α)τα
D1−αn. (40)

As a physical example, the diffusion of degrading morphogens in a microscopically
heterogeneous extracellular environment, which has recently been modelled using
CTRWs [37], can be modelled using a reaction sub-diffusion equation with temporal order
derivatives operating on both the Laplacian diffusion term and a linear sink term [30]. The
extension to nonlinear reaction terms is non-trivial but ad hoc models with temporal order
derivatives operating on both the Laplacian diffusion term and nonlinear reaction kinetics from
the law of mass action have been considered by other authors [25, 29], and results for front
propagation have been found to be in reasonable agreement with Monte Carlo simulations [25].

3. Turing instability analysis

We now consider the stability of the homogeneous steady state solutions in two-species
fractional reaction–diffusion equations where the same temporal order derivative operates on
both the diffusion terms and the reaction terms. If both species have similar diffusive properties
then the general form of the two-species fractional reaction–diffusion model in one spatial
dimension in this special case is

∂n1(x, t)

∂ t
= D1−γ

[
λ f1(n1, n2)+ ∂2n1

∂x2

]
, (41)

∂n2(x, t)

∂ t
= D1−γ

[
λ f2(n1, n2)+ d

∂2n2

∂x2

]
. (42)

In these equations, n1(x, t) and n2(x, t) are the number densities for the two species, f1 and f2

are (generally nonlinear) functions describing the reaction kinetics, d is the ratio of the diffusion
coefficients of species 2 to species 1, γ in the range 0 < γ � 1 is the fractional exponent and
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λ > 0 is a scaling variable which can be interpreted as the linear size of the spatial domain, or
as the relative strength of the reaction terms. In this model, species 1 is an activator of species
2, which is an inhibitor of species 1. The fractional reaction–diffusion system in (41), (42) can
be re-written with Caputo fractional temporal derivatives operating on the left-hand side and no
(fractional order) temporal derivatives operating on the Laplacian terms or the reaction terms.
The fractional order temporal derivatives affect the growth rates of linearized spatial modes
in both representations and must be considered in Turing instability analysis. As canonical
examples of reaction kinetics we consider both Brusselator reaction kinetics [41]

f1(n1, n2) = 2 − 3n1 + n2
1n2 (43)

f2(n1, n2) = 2n1 − n2
1n2 (44)

and Gierer–Meinhardt reaction kinetics [42]

f1(n1, n2) = 1 − n1 + 3
n2

1

n2
(45)

f2(n1, n2) = n2
1 − n2. (46)

For each model we consider the one-dimensional domain 0 � x � L with zero-flux
boundary conditions at both ends, i.e.,

∂n j

∂x

∣∣∣∣
x=0

= ∂n j

∂x

∣∣∣∣
x=L

= 0, j = 1, 2. (47)

Linearizing the model equations, (41) and (42), around the homogeneous steady state
(n∗

1, n∗
2), we obtain the evolution equations for the perturbations �n j as follows:

∂�n1(x, t)

∂ t
= D1−γ

[
λ (a11�n1 + a12�n2)+ ∂2�n1

∂x2

]
, (48)

∂�n2(x, t)

∂ t
= D1−γ

[
[λ (a21�n1 + a22�n2)+ d

∂2�n2

∂x2

]
(49)

where the coefficients

ai j = ∂ fi

∂x j

∣∣∣∣
(n∗

1,n
∗
2)

, i = 1, 2, j = 1, 2.

In earlier work [18] we showed that Turing instabilities in linear fractional reaction
diffusion systems could readily be identified after taking a temporal Laplace transform and
a spatial Fourier transform. If we apply a temporal Laplace transform (variable u) and a spatial
Fourier transform (variable q) to the linearized equations, (48) and (49) (or to a linearization
of the Caputo representation with fractional temporal derivatives on the left-hand side of the
equations only), and solve for the transformed perturbations, we find

ˆ̂
�n1(q, u) =

(
uγ + q2d − λa22

) ˆ�n1(q, 0)+ λa12 ˆ�n2(q, 0)

u1−γ [(uγ + q2 − λa11
) (

uγ + q2d − λa22
)− λ2a12a21

] (50)

ˆ̂
�n2(q, u) = λa21 ˆ�n1(q, 0)+ (

uγ + q2 − λa11
) ˆ�n2(q, 0)

u1−γ [(uγ + q2 − λa11
) (

uγ + q2d − λa22
)− λ2a12a21

] (51)

where ˆ�n1(q, 0) and ˆ�n2(q, 0) are determined by the initial conditions. The conditions for
Turing instabilities can now be found by considering the large t asymptotic behaviour in the
inverse Laplace transforms

ˆ�n j (q, t) = 1

2π i

∫ c+i∞

c−i∞
ˆ̂

�n j (q, u)eut du. (52)

9
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In general, this asymptotic behaviour can be deduced by applying the Cauchy residue theorem
considering a modified Bromwich contour with a branch cut from the branch point at u = 0
along the negative real axis [18]. The unstable wavenumbers q are identified as the q values

for which the real parts of the poles u�(q) of ˆ̂
�n j(q, u) are positive. In the present case the

inverse Laplace transforms can be evaluated explicitly in terms of Mittag–Leffler functions and
the instability conditions can be deduced from known asymptotic properties of these functions.
We follow this latter approach here. First we note that the term inside the square brackets in the

denominator of ˆ̂
�n j(q, u) is a quadratic
(
s + q2 − λa11

) (
s + q2d − λa22

)− λ2a12a21 (53)

in the variable s = uγ . We denote the zeros of this quadratic by s+(q) and s−(q) where

s±(q) = − 1
2

[
q2 (d + 1)− λ (a11 + a22)

]

±
√

1
4

[
q2(d + 1)− λ(a11 + a22)

]2 − [
(q2 − λa11)(dq2 − λa22)− λ2a12a21

]
.

(54)

The expressions for the inverse Laplace transforms have different functional forms depending
on the whether the zeros are real and distinct, real and repeated, or complex conjugate pairs as
follows.

3.1. Real distinct zeros

In this case we can write

ˆ̂
�n j(q, s) =

(
α j
(
s+(q), q

)

s+(q)− s−(q)

)(
uγ−1

uγ − s+(q)

)
−
(
α j
(
s−(q), q

)

s+(q)− s−(q)

)(
uγ−1

uγ − s−(q)

)
(55)

where the functions α j (s, q) are given by

α1 (s, q) = (
s + q2d − λa22

) ˆ�n1(q, 0)+ λa12 ˆ�n2(q, 0) (56)

α2 (s, q) = λa21 ˆ�n1(q, 0)+ (
s + q2 − λa11

) ˆ�n2(q, 0). (57)

The temporal behaviour of the transform in (55) can now be found by inverting the Laplace
transform to give

ˆ�n j(q, t) = α j
(
s+(q), q

)

s+(q)− s−(q)
Eγ
(
s+(q)tγ

)− α j
(
s−(q), q

)

s+(q)− s−(q)
Eγ
(
s−(q)tγ

)
(58)

where Eγ (z) is the Mittag–Leffler function in one parameter [43] with asymptotic
properties [44–46]

Eγ (z) ∼ 1

γ
ez

1
γ −

∞∑

k=1

z−k

�(1 − γ k)
as z → ∞ (59)

and

Eγ (z) ∼ −
∞∑

k=1

z−k

�(1 − γ k)
as z → −∞. (60)

That is, the Mittag–Leffler function decays to zero for large negative values of its argument but
goes to infinity for large positive values. It follows that if both s+(q) and s−(q) are negative
for a range of q values then the Mittag–Leffler function will decay with time for those q values
and thus perturbations of these wavenumbers will decay to zero. If this occurs for all values of
q then no Turing pattern will form. Alternatively if s+(q) is positive for some q values (s−(q)
is always negative in this case) then the term in the perturbation, involving s+(q), will grow
with time and a Turing pattern will form.

10
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3.2. Real repeated zeros

In this case we write s+ = s− = s∗ say and then

ˆ̂
�n j (q, s) = α j

(
s∗(q), q

) uγ−1

(uγ − s∗(q))2
+ ˆ�n j(q, 0)

uγ−1

uγ − s∗(q)
. (61)

The inverse Laplace transform now yields

ˆ�n j(q, t) = α j
(
s∗(q), q

)
tγ E (1)

γ

(
s∗(q)tγ

)+ ˆ�n j (q, 0)Eγ
(
s∗(q)tγ

)
(62)

where E (1)
γ (z) is the first derivative of the Mittag–Leffler function in one parameter [43]. Since

the repeated zeros of (53) are negative, it follows from the asymptotic result in (60) together
with the asymptotic result

E (1)
γ (−z) ∼

∞∑

p=1

p(−z)−(p+1)

�(1 − γ p)
as z → −∞

that modes with wavenumbers for which s+(q) = s−(q) will decay to zero, and no Turing
pattern will form.

3.3. Complex conjugate pair of zeros

In this case we write the zeros as

s± = a ± ib

where a, b are both real. The Laplace transforms can now be written in the form

ˆ̂
�n j(q, u) = α j (a(q), q)

∞∑

n=0

(−1)n (b(q))2n uγ−1

(uγ − a(q))2n+2

+ h j(q)
∞∑

n=0

(−1)n (b(q))2n uγ−1

(uγ − a(q))2n+1
, (63)

which can be inverted to yield

ˆ�n j(q, t) = α j (a(q), q)
∞∑

n=0

(−1)n (b(q))2n

(2n + 1)! t (2n+1)γ E (2n+1)
γ (a(q)tγ )

+ ˆ�n j(q, 0)
∞∑

n=0

(−1)n (b(q))2n

(2n)! t (2n)γ E (2n)
γ (a(q)tγ ) (64)

where E (k)
γ (z) is the kth derivative of the Mittag–Leffler function Eγ (z). A more convenient

expression for ascertaining the asymptotic behaviour can be found by first writing

ˆ̂
�n j (q, u) = α j

(
s+(q), q

)

2ib(q)

uγ−1

uγ − s+(q)
− α j

(
s−(q), q

)

2ib(q)

uγ−1

uγ − s−(q)
(65)

and then inverting to find

ˆ�n j(q, t) = α j
(
s+(q), q

)

2ib(q)
Eγ
(
s+(q)tγ

)− α j
(
s−(q), q

)

2ib(q)
Eγ
(
s−(q)tγ

)
. (66)

This equation is similar to the expression given in (58) except the arguments of the Mittag–
Leffler functions are now complex. The result given in (60) still holds provided |arg(−z)| <
(1 − γ /2)π as |z| → ∞ [44]. For γ values in the interval 0 < γ � 1 this criterion is satisfied
by complex numbers with 	(z) � 0. Hence the wavenumbers, q , corresponding to complex

11
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zeros, will decay to zero, and no Turing pattern will form. This can readily be seen in the case
of standard diffusion, γ = 1, where ˆ�n j(q, t) can be simplified to

ˆ�n j (q, t) = α j (a(q), q) eat cos (bt)+ ˆ�n j(q, 0)

b
eat sin (bt) (67)

which decays to zero for a < 0.

3.4. Critical d

In the preceding analysis we found that the condition for a Turing instability in the model
system described by (41) and (42) can be expressed by the single condition that u+(q) is real
and positive for some non-zero values of q . It follows from (54) that this condition is met if

M(q2) = (q2 − λa11)(dq2 − λa22)− λ2a21a12 < 0 (68)

for some q 
= 0. The function M(q2) is a quadratic function of q2 with a single minimum at

q�2 = λda11 + λa22

2d
. (69)

Thus if M(q�2) < 0 then M(q2) will be negative for a range of non-zero q as required. If we
define the stability matrix

A =
(

a11 a12

a21 a22

)
(70)

then the condition that M(q�2) < 0 leads to

(a22 + da11)
2 > 4d(det A) (71)

which is satisfied if

d > d� =
(

1

a11

[√
det A + √−a12a21

])2

(72)

and then the range of excited q values is defined by

−
√
(da11 + a22)2 − 4d(det A)

� 2dq2 − (da11 + a22)

� +
√
(da11 + a22)2 − 4d(det A). (73)

The critical value of d defined by (72) and the range of excited modes defined by (73)
are exactly the same as for the standard reaction–diffusion equation [14]. In the case of
Gierer–Meinhardt reaction kinetics and Brusselator reaction kinetics the critical d values are
d∗ = 10 + 4

√
6 ≈ 19.7980 and d∗ = 12 + 8

√
2 ≈ 23.2127, respectively.

3.5. Approach to steady state

Although the pattern of excited modes in the fractional system considered here is the same
as the corresponding standard case, the temporal evolution of the transforms ˆ�n1(q, t) and

ˆ�n2(q, t), given in (58), is determined by Mittag–Leffler functions of tγ and hence we
anticipate that the initial growth of the modes will be slowed for γ < 1. Indeed, it can be
shown through rescaling analysis that even in the fully nonlinear system the approach to the
non-homogeneous steady state (assuming such a state exists) is governed by a pure function of
tγ . To see this we introduce a change of variables z = tγ and n j (x, t) = g j(x, z) = g j(x, tγ )

12



J. Phys.: Condens. Matter 19 (2007) 065115 T A M Langlands et al

into (41) and (42). The bracketed terms on the right-hand side can now be written as
p j(x, z) = p j(x, tγ ). We now use the chain rule to write

∂n j (x, t)

∂ t
= γ tγ−1 ∂g j(x, z)

∂z
. (74)

In terms of our transformed variables we can also write (see appendix B)

∂1−γ

∂ t1−γ p j(x, tγ ) = γ tγ−1 1

γ

(
Pγ,1−γ

− 1
γ

p j(x, z)

)
(z) (75)

where
(

Pτ,α
β r

)
(z) =

η−1∏

j=0

(
τ + j − 1

β
z

d

dz

)(
K τ+α,η−α
β r

)
(z) (76)

is the Erdelyi–Kober fractional derivative operator with η − 1 < α � η and η being a natural
number [47].

It now follows that the fractional reaction diffusion equations (41) and (42) can be written
in transformed variables as

∂g j(x, z)

∂z
= 1

γ

(
Pγ,1−γ

− 1
γ

p j(x, z)

)
(z) (77)

which is a governing equation solely in terms of x and z, showing that the solution

n j (x, t) = g j(x, z) = g j(x, tγ ) (78)

is a pure function of x and tγ . Whilst we have shown in (77) that the approach to the steady state
is a function of tγ , it should be noted that the equation is still parameterized by the fractional
exponent. This can be seen in the Turing instability analysis in (58), (62) and (66), where
(in the linear case) the temporal evolution of the modes is expressed as an explicit function
of tγ through the Mittag–Leffler functions. However, the Mittag–Leffler functions are still
parameterized by the fractional exponent and they only reduce to the solution in the standard
case when the fractional exponent is one. Thus in order to gauge the accuracy of the Turing
stability analysis results, as a reliable predictor of Turing pattern formation, we are required to
run simulations for each value of the fractional exponent.

4. Numerical simulations

The fractional reaction diffusion systems with both Brusselator and Gierer–Meinhardt reaction
kinetics were simulated using an implicit finite difference scheme similar to that described
in Henry et al [28]. The model equations were discretized using finite differences with a
backward time step for the time derivative and a centred difference approximation for the
spatial derivative. The fractional derivative of order 1 − γ with respect to time at t = tk
was approximated using the L1 scheme [48]

d1−γ y

dt1−γ ≈ �tγ−1

� (1 + γ )

{
γ y(0)

k1−γ +
k∑

l=1

(y (tl+1)− y (tl)) ((k − l + 1)γ − (k − l)γ )

}

where �t is the step length in time and �(x) is the Gamma function. In our simulations we
have retained the full evaluation of the sum for the computation of the fractional derivative.
This improves accuracy at the expense of increased computation.

We denote the solution of species n j at time t = j�t and position x = i�x by

n j (i�x, k�t) = nk
j,i .

13
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The finite difference equations are for i = 2, . . . , N − 1 and j = 1, 2

nk+1
j,i

(
1 + 2δ j

)− δ j n
k+1
j,i−1 − δ j n

k+1
j,i+1 − δ f j f j

(
nk+1

1,i , nk+1
2,i

)

= nk
j,i + δ f j

(
g(l)j,iω

k
j +

k∑

l=2

βk−l+2 g(l)j,i

)
(79)

where

g(k)j,i = d j∇nk
j,i + f j

(
nk

1,i , nk
2,i

)
,

∇nk
j,i = nk

j,i+1 − 2nk
j,i + nk

j,i−1,

δ f j = �tγ j

�x2�(1 + γ j )
,

δ j = d jδ f j ,

(80)

and d1 = 1 and d2 = d . For the boundary point, i = 1, the value of nk
j,i−1 in (79) and (80)

is replaced by nk
j,2. Likewise the value of nk

j,i+1 is replaced by nk
j,N−1 at the boundary point

i = N .
The weights of the fractional derivative in (79) are given by

ωk
j = γ j

k1−γ j
− [

kγ j − (k − 1)γ j
]

and

βs = sγ j − 2 (s − 1)γ j + (s − 2)γ j s = 2, 3, . . . , k.

The ‘constant’ terms of the sum are given on the right of these equations. In recent work [49]
we showed that the implicit scheme for the fractional diffusion equation with temporal order
derivative 1−γ operating on the diffusion term is unconditionally stable with accuracy O(�x2)

in the spatial grid size and O(�t1+γ ) in the fractional time step.
We have carried out simulations based on the above scheme with spatial grid spacing

�x = 100/255 and with �t = 1/100 for 15 000 time steps and for a range of γ =
0.1, 0.2, 0.3, . . . , 0.9, 1.0. In our simulations we have investigated both random and sinusoidal
initial perturbations between −10−2 and +10−2 from the homogeneous steady state. Surface
profiles and surface density plots of the activator n1(x, t) from some of the simulations are
shown for Gierer–Meinhardt reaction kinetics with d = 20 (figure 1) and for Brusselator
reaction kinetics with d = 25 (figure 2). In the surface density plots n1(x, t) � n�1 is shown as
black and n1(x, t) < n�1 is shown as white.

There are several features to note from the simulations: (i) there are no complex spatio-
temporal patterns similar to those that we reported recently (see especially figures 4 and 5
in [28]) for fractional activator–inhibitor systems with the temporal fractional order derivative
operating on the diffusion term but not the reaction term. (ii) The patterns appear to evolve
to the same final steady state. This final steady state is evident in simulations with γ =
1.0, 0.9, 0.8 in the fractional Gierer–Meinhardt model (see figure 1(a) for γ = 0.8) and
γ = 1.0, 0.9, 0.8, 0.7 in the fractional Brusselator model (see figure 2(a) for γ = 0.8) but
the steady state can only be inferred for lower values of γ . (iii) The time taken to approach the
steady state increases with decreasing γ . This relaxation time is a manifestation of the temporal
memory of the initial state embodied in the fractional temporal derivative. Simulations with
different initial conditions reveal that the memory of the initial conditions is also evident in
the spatial patterns in the transient relaxation regime. (v) Turing linear stability analysis is an
excellent predictor of spatial pattern formation in fractional reaction–diffusion systems.

In order to further investigate the growth of unstable modes as a function of the parameter
γ we have recorded the time for the maximum perturbation away from the steady state in

14
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Figure 1. Surface profiles and surface density plots for n1(x, t) in the fractional Gierer–Meinhardt
model with randomly perturbed initial conditions and d = 20: (a) γ = 0.8; (b) γ = 0.5;
(c) γ = 0.2.

our simulations to increase to a nominal value of 10−2. The deviation from the steady state
decreases initially but then proceeds to grow. The time for the maximum perturbation to reach
the value of 10−2 is measured in this growth regime. A plot of the logarithm of this time versus
1/γ is shown in figure 3 for the Brusselator model. Note that only results for γ � 0.5 are
shown as the perturbation remained below 10−2 in the simulated time period for γ � 0.4.
The linear behaviour in figure 3 is consistent with the Fourier transform results for the time
evolution of the perturbations in (58) based on linear stability analysis. The time evolution of
the maximal displacement should follow that of the maximally excited mode and from (58) this
is given by

ˆ�n j (t) = A j Eγ
(
s+(q�)tγ

)
(81)
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Figure 2. Surface profiles and surface density plots for n1(x, t) in the fractional Brusselator model
with randomly perturbed initial conditions and d = 25: (a) γ = 0.8; (b) γ = 0.5; (c) γ = 0.2.

where q� is defined by (69). If we use the asymptotic result in (59) then in the growth regime
we have

�̂n(t) ∼ A

γ
exp(s+(q�)

1
γ t). (82)

Thus if we let τ denote the time with displacement �̂n(τ ) = �̂n
�

then after taking logarithms
of both sides in (82) we have

ln τ ∼ − 1

γ
ln
(
s+(q�)

)+ ln

(
�̂n

�

ˆ�n0

)
(83)

where ˆ�n0 is the displacement at the start of the growth regime. In the case of the Brusselator
reaction kinetics we have a11 = 1, a12 = 4, a21 = −2, a22 = −4 and q� = [(d − 4)/(2d)]1/2
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Figure 3. The estimated time
for the maximum perturbation to
reach 0.01 versus 1/γ found from
the Brusselator model simulations
with randomly perturbed initial
conditions.

(This figure is in colour only in
the electronic version)

so that if we substitute these values together with d = 25 into (54) we find − ln(u+(q�)) ≈ 3.5
which compares reasonably with the straight line slope of 3.3 in figure 3.

5. Summary and conclusions

We revisited the problem of sub-diffusion with reactions within the mesoscopic description
of a continuous time random walk with an instantaneous source/sink term. The long time
asymptotic limit reduces to a fractional reaction–diffusion equation with fractional order
temporal derivatives operating on the diffusion term and an additive source/sink term. We
investigated Turing instability induced pattern formation in a two-species variant of this
model system with source/sink terms taken to be fractional order temporal derivatives of
standard activator–inhibitor kinetics. We also carried out numerical studies of patterning in this
system. Our studies showed that the critical diffusivity ratio (activator to inhibitor) for Turing
instabilities and the final spatial patterns that emerge are unaffected by the anomalous diffusion
in this model. These results are in marked contrast with our earlier studies of Turing pattern
formation in fractional activator–inhibitor systems with fractional order temporal derivatives
operating on the diffusion term alone [28]. In these earlier studies the anomalous sub-
diffusion enables patterning at lower values of the diffusivity ratio (see also the simulations by
Weiss [32]) and it yields complex spatio-temporal patterns with arbitrarily small wavelengths
excited. In all of our studies of fractional nonlinear reaction–diffusion systems we have found
that Turing linear instability analysis is an excellent predictor of both the onset of patterning
and the nature of patterning as confirmed in numerical simulations.

The main conclusion of this study should not be that one or the other fractional calculus
model is the appropriate generic model for anomalously diffusing and reacting species.
Different models may be appropriate for different physical situations. Theoretical and
numerical studies of the sort undertaken in this paper can help to decide which model is
appropriate for a particular physical system. For example, if a fractional reaction–diffusion
model is sought for the emergence of complex spatio-temporal patterning in experimental
systems with reactions and sub-diffusion then a model with the same fractional order temporal
derivative operating on both diffusion terms and reaction terms would not be appropriate.

We are currently developing Monte Carlo simulations for fractional reaction sub-diffusion
equations as considered in this paper. Our preliminary Monte Carlo results for sub-diffusion
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with linear reaction dynamics, which agree with the algebraic results in [30], and extensions
for nonlinear reaction dynamics will be the subject of a future publication.
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Appendix A. Morphogen degradation

In the CTRW model of morphogen degradation by Hornung et al [37] the probability of finding
a morphogen at position x at time t is expressed as

p(x, t) =
∫ t

0
�(t − t ′)q(x, t ′) dt ′ (A.1)

where

�(t) = 1 −
∫ t

0
ψH (t

′) dt ′ −
∫ t

0
φH (t

′) dt ′ (A.2)

is the probability of surviving at position x and not being degraded during time t . In this
equation, ψH (t) is a transition time density normalized to (1 − r) and φH (t) is a degradation
time density normalized to r . Thus we can write

ψH (t) = (1 − r)ψ(t) (A.3)

where ψ(t) is the waiting time probability density defined in (9) of the paper, and, in the case
of instantaneous degradation [37],

φH (t) = rδ(t). (A.4)

If we now substitute (A.3) and (A.4) into (A.2) then we can write

�(t) = (1 − r)

(
1 −

∫ t

0
ψ(t ′) dt ′

)
+ r

(
1 −

∫ t

0
δ(t ′) dt ′

)
(A.5)

= (1 − r)	(t) (A.6)

where 	(t) is the survival probability defined in (11) of the paper. If we substitute (A.6)
into (A.1) then we recover equation (12) in the paper, in the special case where s(x, t) =
−rq(x, t) is an instantaneous linear sink.

Appendix B. Temporal rescaling of the fractional temporal derivative

In this section we arrive at the expression for the fractional temporal derivative of order 1 − γ

of a function of tγ . Following the approach of Buckwar and Luchko [47] we first write the
fractional derivative of a function y(t) = r(tγ ) as

∂1−γ

∂ t1−γ y(t) = ∂

∂ t

1

� (γ )

∫ t

0

r(τ γ )

(t − τ )1−γ dτ. (B.1)

Now rescaling τ = t/ω, (B.1) can be written as

∂1−γ

∂ t1−γ y(t) = ∂

∂ t

tγ

� (γ )

∫ ∞

1
ω−(1+γ ) (ω − 1)γ−1 r

(
zω−γ ) dω (B.2)
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or as

∂1−γ

∂ t1−γ y(t) = ∂

∂ t
tγ
(

K 1,γ
− 1
γ

r

)
(z) (B.3)

where the Erdelyi–Kober fractional integral operator is given by

(
K τ,α
β r

)
(z) =

⎧
⎨

⎩

1

� (α)

∫ ∞

1
ω−(τ+α) (ω − 1)α−1 r

(
zω1/β

)
dω, α > 0

r(z), α = 0.
(B.4)

Now applying the product rule to (B.3)

∂1−γ

∂ t1−γ y(t) = γ tγ−1

(
K 1,γ

− 1
γ

r

)
(z)+ tγ

∂

∂ t

(
K 1,γ

− 1
γ

r

)
(z) (B.5)

and using the result in (74) we have

∂1−γ

∂ t1−γ y(t) = γ tγ−1

[
1 + z

∂

∂z

](
K 1,γ

− 1
γ

r

)
(z). (B.6)

The fractional derivative can now be written in terms of a Erdelyi–Kober fractional derivative
operator

∂1−γ

∂ t1−γ y(t) = γ tγ−1 1

γ

(
Pγ,1−γ

− 1
γ

r

)
(z) (B.7)

where the Erdelyi–Kober fractional derivative operator is given by

(
Pτ,α
β r

)
(z) =

η−1∏

j=0

(
τ + j − 1

β
z

d

dz

)(
K τ+α,η−α
β r

)
(z) (B.8)

with η − 1 < α � η and η being a natural number [47].
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